Author Affiliations
Abstract
1 Department of Physics, National University of Defense Technology, Changsha, China
2 Department of Nuclear Science and Technology, National University of Defense Technology, Changsha, China
3 Key Laboratory for Laser Plasmas (MOE) and School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
4 Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai, China
5 Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, China
Relativistic few-cycle mid-infrared (mid-IR) pulses are unique tools for strong-field physics and ultrafast science, but are difficult to generate with traditional nonlinear optical methods. Here, we propose a scheme to generate such pulses with high efficiency via plasma-based frequency modulation with a negatively chirped laser pulse (NCLP). The NCLP is rapidly compressed longitudinally due to dispersion and plasma etching, and its central frequency is downshifted via photon deceleration due to the enhanced laser intensity and plasma density modulations. Simulation results show that few-cycle mid-IR pulses with the maximum center wavelength of $7.9\;\unicode{x3bc} \mathrm{m}$ and pulse intensity of ${a}_{\mathrm{MIR}}=2.9$ can be generated under a proper chirp parameter. Further, the maximum energy conversion efficiency can approach 5.0%. Such a relativistic mid-IR source is promising for a wide range of applications.
chirp laser pulses laser wakefield photon deceleration relativistic mid-infrared generation 
High Power Laser Science and Engineering
2023, 11(5): 05000e57
作者单位
摘要
1 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
2 State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
中国激光
2012, 39(10): 1005006

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!